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Abstract

We present a general framework to design Godunov-type schemes for multidimensional ideal magnetohydrody-

namic (MHD) systems, having the divergence-free relation and the related properties of the magnetic field B as built-in

conditions. Our approach mostly relies on the constrained transport (CT) discretization technique for the magnetic field

components, originally developed for the linear induction equation, which assures ½r � B�num ¼ 0 and its preservation in

time to within machine accuracy in a finite-volume setting. We show that the CT formalism, when fully exploited, can

be used as a general guideline to design the reconstruction procedures of the B vector field, to adapt standard upwind

procedures for the momentum and energy equations, avoiding the onset of numerical monopoles of Oð1Þ size, and to

formulate approximate Riemann solvers for the induction equation. This general framework will be named here upwind

constrained transport (UCT). To demonstrate the versatility of our method, we apply it to a variety of schemes, which

are finally validated numerically and compared: a novel implementation for the MHD case of the second-order Roe-

type positive scheme by Liu and Lax [J. Comput. Fluid Dyn. 5 (1996) 133], and both the second- and third-order

versions of a central-type MHD scheme presented by Londrillo and Del Zanna [Astrophys. J. 530 (2000) 508], where the

basic UCT strategies have been first outlined.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

In extending Godunov-type conservative schemes designed for Euler equations of gas-dynamics to the

system of (ideal) magnetohydrodynamics (MHD), in the multidimensional case a main problem arises on

how to represent the solenoidal structure of the magnetic field vector B and on how to formulate recon-

struction procedures and (approximate) Riemann solvers sharing consistency with this property. In the last

years a number of works have focused on this specific problem and many different approaches have been
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proposed. A wide class of (second-order) numerical schemes for regular grids have been analyzed and

compared by Toth [1], while contributions covering also higher order schemes, adaptive mesh refinements

(AMR) and unstructured grids are in rapid development.
Since we are mainly interested here to analyze methodological aspects, we propose a broad classification

of the published contributions on this specific topic into two main groups:

1. Schemes based on standard upwind procedures (henceforth SUP) designed for Euler equations, where

also magnetic field components are discretized at cell centers as the other fluid variables. Since in this

case the approximated ½r � B�num based on central derivatives may have a non-vanishing size, different

strategies to control or prevent the accumulation in time of related spurious numerical effects (usually

referred to as numerical monopoles) have been proposed.

• A first method, suggested by Brackbill and Barnes [2], is to add an elliptic (Poisson) equation to re-
cover the solenoidal property at each time-step. In [1], this procedure has been named projection

scheme and is currently widely adopted (see [3] for a high order WENO scheme).

• In the scheme introduced by Powell [4] (see also [5]), the numerical ½r � B�num quantity is not forced to

vanish; the MHD system is reformulated by adding new source terms proportional to this variable in

order to recover the original MHD system in non-conservative form. Moreover, the classical seven-

mode Riemann wave fans have been enlarged to eight modes. In this modified system, upwinding is

applied to all magnetic field components and hence also to the component Bn across a discontinuity

surface.
• In a more recent work [6], in order to preserve both the conservative form and the hyperbolic struc-

ture of the MHD system, a new time-dependent wave equation is introduced to damp and/or to trans-

port away the non-zero ½r � B�num contributions.

2. In the second group we include schemes which take advantage of the so-called constrained transport (CT)

method by Evans and Hawley [7] (originally suggested for the evolution of the induction equation in the

linear approximation). It is a main feature of this method to introduce staggered discretizations of mag-

netic and electric vector fields in the induction equation. In fact, by using these staggered values to ap-

proximate the relevant first derivatives, ½r � B�num ¼ 0 in the initial conditions and its exact preservation
in time result. The problem here is on how to apply this formalism in a Godunov-type scheme for the full

MHD system.

• Most of the published works combine the above CT discretization with the SUP cell-centered discret-

ization by introducing different empirical recipes (e.g. [8–11]). However, these procedures result in a

sort of hybrid schemes and the problem of numerical monopoles is still left open, in our opinion.

• In our previous work [12] (LD from now on) we have proposed numerical procedures to take advan-

tage of the specific CT discretization benefits, and hence the ½r � B�num ¼ 0 condition, even in the re-

construction steps and in the approximate Riemann solvers. The same method has been then applied
to relativistic MHD [13].

The goal of the present paper is twofold. First, by adding analytical arguments to the approach outlined

in LD, we propose a method to construct and then to characterize a class of numerical schemes. Second, we

present implementations of a variety of different schemes, to demonstrate the versatility and self-consis-

tency of the method.

Regarding the first goal, our main concern is here to select a set of properties, some of them common to

the Euler system and other specific of MHD equations, which in our opinion should be preserved in the

numerical discretization. In this way, it is then possible to envisage Godunov-type schemes for MHD
having: (a) the divergence-free condition as an exact built-in property, (b) reconstruction and upwind

procedures consistent with this property. Since the CT formalism comes out to be the necessary starting

point to achieve this result, our framework will be named here upwind constrained transport (UCT) method.

As a novel numerical application we then propose the UCT implementation of the positive scheme by

Liu and Lax [14,15], a second-order Roe-type scheme which proves to be accurate and robust. Numerical
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validation will be finally presented for several standard two-dimensional test problems, where the results of

the new MHD positive scheme are compared with central-type schemes as proposed in LD, extended here

to more accurate central-upwind two-speed approximate Riemann solvers, and tested in its second and
third-order implementations.

This paper is organized as follows. In the next section, we propose and discuss some general conditions

as guidelines for numerical modeling. The main ingredients to formulate general UCT-based Godunov-type

schemes for MHD systems, i.e., the discretization form, the proper reconstruction procedures and the

approximate Riemann solvers, are presented in Section 2. In Section 3, we specify the method to the po-

sitive and central MHD schemes, which will be finally tested and compared in Section 4.
1.1. Conservation laws and consistency demands for numerical MHD

The MHD system has a peculiar form and cannot be simply reduced to a set of conservation laws

for scalar variables, as the Euler equations. In fact, if the specific structure of spatial differential

operators is taken into account, it is more properly represented by the set of the following two

coupled sub-systems:

ou

ot
þr � fðwÞ ¼ 0; ð1Þ
oB

ot
þr� EðwÞ ¼ 0; ð2Þ

equipped with the non-evolutionary constraint on the B vector field

r � B ¼ 0; ð3Þ

which, once satisfied for initial conditions, is analytically preserved in time by Eq. (2).

The set of Eq. (1) evolves in time the five-component array of scalar functions u ¼ ½ulðx; tÞ�T,
l ¼ 1; 2; . . . ; 5, while the set (2) evolves the vector field B ¼ ½Biðx; tÞ�T, i ¼ x; y; z. The overall set of de-

pendent variables are henceforth represented by the eight-component array w ¼ ½u;B�T. The first array

contains the conservative fluid variables u ¼ ½q; qi; e�T, where q is the mass density, qi ¼ qvi are the mo-

mentum components, vi are the fluid velocity components, and e ¼ p=ðc� 1Þ þ qv2=2þ B2=2 is the total

energy density for a perfect gas equation of state, where p is the kinetic pressure and c is the adiabatic index.
The corresponding flux vector components f i ¼ ½f l

i �
T
, l ¼ 1; 2; . . . ; 5 are given by f i ¼ ½qi;Mi;j;Hi�T,

i; j ¼ x; y; z, with the momentum flux tensor defined by Mi;j ¼ viqj þPdi;j � BiBj and the energy flux

components defined by Hi ¼ viðeþPÞ � Biðv � BÞ, where P ¼ p þ B2=2 is the total pressure. In sub-system

(2), which is the induction equation for the magnetic field vector B, the corresponding flux is simply given

by the electric field vector E ¼ �v� B, where the assumption of a perfect conducting plasma (ideal MHD)

has been implicitly assumed.

As for the Euler equations, the system (1) and (2) has to be supplied with entropy functions S ¼ SðwÞ
satisfying the condition

oS
ot

þr � FSðwÞ6 0; ð4Þ

which allows to identify, among discontinuous solutions of the MHD system, the (physically) admissible

ones. The existence of entropy functions (in fact S ¼ �qs, where s / logðpq�cÞ is the physical entropy per

unit mass) is also related to the hyperbolic structure of the MHD equations. For smooth solutions, the

system (1) and (2) can be put in the non-conservative (quasi-linear) form
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ot
þ ½JðwÞ � r�w ¼ 0; ð5Þ

where J ¼ ðJiÞ, i ¼ x; y; z, and each Ji is the Jacobian matrix of the eight-component flux array ½f l
i ;Ei�T with

respect to the w variables. It is a well-known property that any linear combination Jðw; kÞ ¼
P

i kiJiðwÞ, for
real ki numbers, and then also each Ji matrix, is hyperbolic at any reference state w. Moreover, as for the

Euler equations (see [16]), the (positive) Hessian matrix Sw;w acts as similarity transform to make all Ji
symmetrizable.

To underline differences and analogies of the MHD system with respect to the reference Euler system
which may have relevance for numerical modeling, some remarks are in order:

• The u array contains scalar variables and the corresponding flux derivatives are expressed by the

div � ½r�� conservative operator. Sub-system (1) has then the same formal structure of the Euler system

for gas-dynamics. At surface elements where discontinuities take place, this conservation form leads to

the usual Rankine–Hugoniot relations. On the other hand, the Bðx; tÞ vector is anti-symmetric (an axial

vector), components Bi are pseudo-scalars, and the corresponding evolution operator is given by the an-

ti-symmetric curl � ½r � �� derivative. The conservative form is now expressed by the scalar condition

(3) (magnetic flux conservation) and by the r� E flux derivatives (conservation along a closed contour).
Discontinuous solutions satisfy jump relations just for the tangential components Bt ¼ B� n, where n

indicates the normal direction, whereas the normal field component Bn ¼ B � n is continuous. The Ran-

kine–Hugoniot relations, once supplied with an appropriate entropy law, allow to identify the physically

correct discontinuous solutions. It is apparent that magnetic discontinuities and the related entropy con-

straint do not involve the parallel Bn component.

• It follows that smoothness properties of MHD variables are also different. Scalar components ulðx; tÞ
may develop discontinuous solutions along any space direction and can be then represented on the space

of piecewise continuous functions. The vector field Bðx; tÞ has more elaborate properties, since the diver-
gence-free condition entails the BðxÞ field maps piecewise differentiable (and then continuous) field lines.

The conservation law given by Eq. (2) is then essential to preserve in time condition (3) and to assure the

smoothness properties of the magnetic field.

• The divergence-free condition enters implicitly in the MHD momentum and energy conservative equa-

tions. This can also be expressed by realizing that the Maxwell tensor T ¼ IB2=2� BB in the momentum

flux has to satisfy

B � ðr � TÞ ¼ 0; ð6Þ

in order to recover the correct Lorentz force in non-conservative form.
• Finally, the divergence-free condition allows to represent the Bðx; tÞ field via a vector potential Aðx; tÞ,

defined by B ¼ r� A and by the gauge condition r � A ¼ 0, which assures the uniqueness of this rep-

resentation. The new evolution equation is now

oA

ot
þ E ¼ 0: ð7Þ

The above relations and the induction equation (2), together with the condition E � B ¼ 0 valid for ideal
MHD, imply an added conservation law for the magnetic helicity H ¼

R
ðA � BÞdx3, carrying informa-

tions on the topology of magnetic field lines.

When looking at (finite-dimensional) numerical approximations, a main problem is that no rigorous

results on convergence are available, even for the Euler system. In this case, however, by taking advantage

of theoretical achievements, like the Lax–Wendroff theorem [17], heuristic guidelines are usually adopted in

order to:



P. Londrillo, L. Del Zanna / Journal of Computational Physics 195 (2004) 17–48 21
• retain the conservative form of the original equations in the discretized system;

• assure consistency, in the sense that the approximations of the flux functions and of the differential op-

erators have to recover the exact ones as the spatial and temporal grid sizes go to zero;

• assure non-oscillatory (or even monotonicity preserving) numerical representation of discontinuous data;
• assure consistency with the entropy law, in a way the numerical viscosity induced by the upwind differ-

entiation is compatible with Eq. (4) (see [18]);

• assure stability of the numerical solution.

As already anticipated in Section 1, the main issue addressed here is to select a set of additional require-

ments for the MHD system which should assure that the specific properties of the magnetic field enter as

built-in conditions of a numerical scheme. We propose the following:

• the discretized first derivatives oiBi entering the r � B definition are consistent approximations;

• for initial divergence-free fields the approximated derivatives satisfy ½r � B�num ¼ 0 exactly;
• divergence-free initial conditions are preserved exactly in time by the discretized induction equation.

We then suggest the following definition: a numerical scheme is consistent with the specific properties of

the MHD system if all above conditions are fulfilled. This definition, together with the guidelines for Euler

equations, will enable us to identify and construct a class of Godunov-type schemes for MHD, later re-

ferred to as UCT-based schemes.

In this framework, as for the Euler equations, a finite volume setting provides a sufficiently general

starting point. Here, we concentrate only on algorithms for regular structured grids, even if the generality of

the method allows to extend some basic procedures also to adaptive mesh refinements (AMR, [19]) and to
unstructured grids. In particular, De Sterck [20] has developed a general CT formalism for unstructured

triangular grids, named MUCT, where rigorous geometrical arguments have been considered to support

this approach.
2. The UCT method to design Godunov-type schemes for MHD

2.1. Discretization step: finite-volume formalism

In a finite-volume setting, the 3-D computational domain X is first subdivided in Cartesian cells C, with
volume V , side sizes hi, i ¼ x; y; z and faces given by the oriented surface elements S�

i , i ¼ x; y; z, where �
denotes the sign of face normals. For each face Si, we then denote as ðL�

j ; L
�
k Þ, j; k 6¼ i its oriented sides. At

this level of the analysis no indexing on a grid is needed, thus allowing to extend the formalism also to a

non-uniform partition of the X domain, as required in grid refinement techniques. In the following, a

semi-discrete finite-volume approach will be employed, thus only space averages will be considered

and the time dependency will be left for further integration, for example via standard Runge–Kutta
algorithms [21].

A conservative discretization of sub-system (1) is accomplished, as usual for Euler system, by integrating

each scalar equation on the volume element V of each cell C. By application of the Gauss theorem, one has

then

d

dt
uðtÞ þ

X
i

1

hi
ðfþi � f

�
i Þ ¼ 0; ð8Þ

where

uðtÞ ¼ 1

jV j

Z
V
uðx; tÞdV ; f

�
i ¼ 1

jS�
i j

Z
S�

f i½wðx; tÞ�dS ð9Þ

i
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denote, respectively, volume averages of each scalar component ul over the cell C, and f
�
i are flux values

averaged on cell faces S�
i . We note that f i fluxes are represented as exact point values in the (non-averaged)

parallel coordinate i, and the corresponding differences in (8) provide the averaged flux derivatives.
In the case of sub-system (2), two different approaches can be pursued. In the SUP approach, magnetic

field components are discretized by volume averages Bi as other scalar variables ul, and the electric field

components by face averages Ek, as f i fluxes. We have then

d

dt
BiðtÞ þ

X
j;k

�i;j;k
1

hj
ðEþ

k � E
�
k Þ ¼ 0; ð10Þ

where �i;j;k is the Levi–Civita symbol and � here refers to faces normal to the j-direction.
On the other side, in the CT formalism a discretization preserving the original (vector anti-symmetry)

property is accomplished by a surface integration on a cell face followed by the application of the Stokes

theorem on the line contour of that face. This leads to

d

dt
biðtÞ þ

X
j;k

�i;j;k
1

hj
ðEþ

k � E
�
k Þ ¼ 0; ð11Þ

where now

biðtÞ ¼
1

jSij

Z
Si

Biðx; tÞdS; E
�
k ¼ 1

jL�
k j

Z
L�k

Ek½wðx; tÞ�dL ð12Þ

are, respectively, the staggered discretized magnetic field variables, defined as integrals over the cell face Si
(we retain the formalism of non-capital bi components to indicate staggered values to conform with other

authors), while E
�
k are now line-averaged electric field components along face edges L�

k , where the orien-

tation depends on the normal to the face under consideration (see Fig. 1). Here the magnetic field
Fig. 1. The staggering of magnetic and electric vector fields in the CT framework. Only the Sþ
x , S

þ
y and Sþ

z cell faces are visible. The

arrows indicate the respective face normals, placed at intercell centers where bi magnetic field components are defined, and the relative

oriented contours for the application of Stokes� theorem, with arrows placed at edge centers where electric field components are

defined.
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components are represented as (normalized) magnetic fluxes, thus bi are exact point values in the

parallel coordinate i (as f i) while Ek are point values with respect to their orthogonal coordinates

ði; jÞ 6¼ k.
By using this staggered discretization, which yields a couple of normalized fluxes b

�
i defined at S�

i faces

for each direction i, it is now possible to represent the volume average of the (parallel) first derivatives

oiBiðxÞ. Therefore, for divergence-free initial conditions (3), we have

X
i

1

hi
ðbþi � b

�
i Þ ¼ 0; ð13Þ

which will be preserved in time algebraically by the induction Eq. (11).

At this general level, anything is exact. Approximations (in space) arise when all MHD variables,

starting from the discretized values, have to be reconstructed at the cell faces where fluxes are defined as

point values. However, even at this preliminary step, differences in the magnetic field representations of Eq.

(11) with respect to Eq. (10) have relevance:

• When primary data for the magnetic field are the staggered b
�
i components, on each cell C one has at

disposal two independent sets of data. A first consequence is that no reconstruction is needed to evaluate

(at a second-order approximation) these variables as argument of the corresponding f i fluxes at a Si face.
Moreover, these staggered data carry informations both on the volume averaged (or centered) values Bi

and on the first derivative along the parallel coordinate. In fact, ðbþi � b
�
i Þ=hi provides a second-order

(and then consistent) approximation of the oiBi first derivative in point-wise (or finite difference) sense

inside each cell.

Related to the above is the property that each bi component provides a continuous sampling across the

corresponding Si cell face. This follows from the definition in Eq. (12) and by taking into account that a
divergence-free BðxÞ field entails a continuous elemental flux across a discontinuity surface (see [12] for

details). In this way, the continuity property of the Bn normal component in the Rankine–Hugoniot

jump relations retains a consistent representation in a finite volume setting. Staggered components can

also be defined, in a fully equivalent way, by using the vector potential A. In fact, by face-averaging the

defining condition B ¼ r� A, one has

bi ¼
X
j;k

�i;j;k
1

hj
ðAþ

k � A
�
k Þ; ð14Þ

still assuring the divergence-free condition in the form (13). If needed, a time evolution for the numerical

(line averaged) Ak components, consistent with Eq. (7), can also be formulated:

d

dt
AkðtÞ þ Ek ¼ 0; ð15Þ

preserving in time the representation of Eq. (14). Here, the numerical flux Ek are precisely the same as in

Eq. (11).

• On the other hand, when primary data are represented by Bi volume averages, as in Eq. (10), only one

numerical value per cell is available. The averaging procedure, which is now applied also along the i co-
ordinate, while still assuring that Bi are consistent approximations of Bi point values, it also entails a loss

of direct information on the point values at the Si cell faces and on the correspondent parallel derivatives.
Moreover, interpolation procedures are not sufficient, for discontinuous data, to recover these informa-

tions (related to the divergence-free property) and then some added argument, procedure, or constraint

would be necessary, in our opinion, to avoid inconsistent approximations. In the following section we

shall provide a more detailed analysis on this problem.
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We can then conclude here that a finite volume CT formulation of the induction equation satisfy the

general consistency demands presented in Section 1.1, provided the oiBi are approximated using staggered

bi data.
In spite a CT-based discretization for MHD is a longstanding well-known framework for induction

equation, its application to the whole MHD system is yet a matter of debate. In fact, it is yet a persistent

viewpoint in numerical community that staggered collocation of magnetic field may be useful only to ex-

press the divergence-free relation, being otherwise not well suited for upwind formulation in Godunov-type

schemes. In contrast with this viewpoint, we propose here to construct and test numerical schemes explicitly

based on the CT discretization and on the related properties detailed above.

2.2. Reconstruction step: scalar vs divergence-free fields

In the following, we specialize to a Cartesian partition of the computational domain X. For grid indexing

16 j6Nx, 16 k6Ny , 16m6Nz, a generic cell Cj;k;m is defined as

Cj;k;m � ½xj�1=2; xjþ1=2� � ½yk�1=2; ykþ1=2� � ½zm�1=2; zmþ1=2�; ð16Þ

where each fractional index labels a cell interface (say xjþ1=2, here with 06 j6Nx), while a cell center has

coordinates ðxj; yk; zmÞ, with xj ¼ ðxj�1=2 þ xjþ1=2Þ=2, yk ¼ ðyk�1=2 þ ykþ1=2Þ=2, and zm ¼ ðzm�1=2 þ zmþ1=2Þ=2.
For simplicity, now we assume a uniform partition, along all directions, so that (hx � xjþ1=2 � xj�1=2,

hy � ykþ1=2 � yk�1=2, hz � zmþ1=2 � zm�1=2) are the constant sizes for all cells. Under these settings, the primary

volume-averaged array of fluid variables will be indicated as uj;k;m. Surface-averaged staggered magnetic

field components, defined at cell interfaces, will be indicated as ðbxÞjþ1=2;k;m, ðbyÞj;kþ1=2;m, and ðbzÞj;k;mþ1=2. The

same notation holds then for face-centered flux components f i, i ¼ x; y; z, while the edge-centered Ek fields

have indexing ðEzÞjþ1=2;kþ1=2;m, and so forth for other components. Finally, the divided differences for

functions located at cell interfaces introduced in the previous section, e.g., in Eqs. (8), (11) and (13), will be

denoted here as Di, i ¼ x; y; z. For a generic 1-D scalar function f located at inter-cell points xj�1=2, Dx is

then given by

½Dxðf Þ�j ¼
1

hx
½Dxf �j; ½Dxf �j ¼ fjþ1=2 � fj�1=2: ð17Þ

In higher order Godunov-type schemes, a one-dimensional scalar variable uðxÞ, represented by cell-centered

data fujg, is first reconstructed as approximated point values ~uðxÞ inside any cell Cj and up to the interior

cell faces xj�1=2, where fluxes fxðuÞ have to be evaluated. This is accomplished by using local polynomials
~uðxÞ: (a) consistent with the cell averages values uj and (b) having monotone or non-oscillatory properties.

In a second-order approximation, one has the linear fit

~ujðxÞ ¼ uj þ ~DxðuÞðx� xjÞ; ð18Þ

where the non-oscillatory derivative ~DxðuÞ is usually constructed using slope limiters. In the simplest case, it

is defined as

½ ~DxðuÞ�j ¼
1

hx
mmð½Dxu�jþ1=2; ½Dxu�j�1=2Þ; ð19Þ

where ½Dxu�lþ1=2 ¼ ulþ1 � ul (l ¼ j; j� 1) and where mmða; bÞ denotes the usual two-point MinMod

(MM) algorithm. More elaborate limiters can likewise be constructed, using the Van Leer [22]

monotonicity constraint or TVD [23] properties. For higher order schemes, ENO-based procedures have

been developed (see [26], for a review) assuring a non-oscillatory reconstruction under weaker mono-

tonicity constraints.
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The reconstruction in Eq. (18) extends up to the interior face points xj�1=2 providing a left approximation

on the Sþ
x face and a right approximation on the S�

x face, along the indicated coordinate, as needed for flux

computation. At a given cell interface, say at x ¼ xjþ1=2, in cases where a jump of size Dxu ¼ Oð1Þ occurs, the
estimated slope coefficients ½ ~Dx�j and ½ ~Dx�jþ1 using minmod limiters both vanish and the reconstructed ~uðxÞ
variable is represented by piecewise constant (first order) interpolants ~uj ¼ uj and ~ujþ1 ¼ ujþ1, respectively.

For a multidimensional function uðxÞ (in the uniform grid defined above), a tensor-product represen-

tation with one-dimensional interpolants on each coordinate is usually adopted. For unstructured grids

more elaborate procedures are required, but the basic ingredients (consistency with the cell averaged data

and non-oscillatory constraints) still hold. In regular grids, the resulting second-order approximation
~uðxÞ � uðxÞ on each cell Cj;k;m takes then the form

~uðxÞ ¼ uþ ~DxðuÞðx� xjÞ þ ~DyðuÞðy � ykÞ þ ~DzðuÞðz� zmÞ; ð20Þ
where all quantities are implicitly calculated at cell center and each ~DiðuÞ, is the non-oscillatory 1-D first

derivative defined in Eq. (19).

When dealing with the magnetic field BðxÞ, a different approach is needed, in general, to take into ac-

count the vector structure and the specific smoothness properties already quoted in the previous sections.

Starting with face-averaged data bi for i ¼ x; y; z, satisfying the divergence-free condition (13)

DxðbxÞ þ DyðbyÞ þ DzðbzÞ ¼ 0; ð21Þ
the problem of representing each BiðxÞ field along the proper parallel coordinate inside a cell is already

solved at the linear level, since the slope DiðbiÞ is at disposal. Instead, reconstruction is needed along the

face (orthogonal) coordinates, where the field is sampled by averaged ½bxðxÞ�k;m data.

For the BxðxÞ function one has then

~BxðxÞ ¼ ~Bx þ Dxð~bxÞðx� xjÞ þ ~Dyð ~BxÞðy � ykÞ þ ~Dzð ~BxÞðz� zmÞ: ð22Þ

Here, the cell-centered ~Bx values result by noticing that ~Bxðx; yk; zmÞ is the unique linear interpolant of a

continuous function with data at the xj�1=2 points. We have then

ð ~BxÞj;k;m ¼ 1
2
½ðbxÞjþ1=2 þ ðbxÞj�1=2�k;m; ð23Þ

which provides an approximation of the cell averages and of the Bx point values:

~Bx ¼ Bx þOðh2xÞ ¼ Bx þOðh2xÞ: ð24Þ

In Eq. (22) it is evident how staggered and cell-centered fields work differently. Along the parallel x
coordinate, the ~BxðxÞ function is entirely defined by the ðbxÞj�1=2;k;m data, providing the field values at the cell

interfaces, the approximated first derivative ½DxðbxÞ�j;k;m, and the approximated cell-averaged value ð ~BxÞj;k;m.
Reconstruction is needed instead to evaluate the Bx left–right values at the orthogonal cell faces ðS�

y ; S
�
z Þ,

where Bx may have discontinuities and where, correspondingly, bx and cell-centered values ~Bx behave as the

other u scalar variables.

A second property related to the divergence-free conditions is that the ~Bxðx; �Þ function in Eq. (22) maps a

continuous function with first derivative DxðbxÞ which may be discontinuous. To evaluate the jump size, one
considers the second difference D2

xbx � DxDxbx centered at the proper interface point ðxjþ1=2; yk; zkÞ. By taking
into account the divergence-free relation (21) and the commutativity property of the two-point difference

operators, one has

1

hx
D2

xbx ¼ � 1

hy
DyDxby �

1

hz
DzDxbz; ð25Þ

where at least one of the differences Dxby or Dxbz has size Oð1Þ, by definition.
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Following the same procedure the ðBy ;BzÞ components can be represented, on the same cell, by the

relations

~ByðxÞ ¼ ~By þ ~Dxð ~ByÞðx� xjÞ þ DyðbyÞðy � ykÞ þ ~Dzð ~ByÞðz� zmÞ; ð26Þ
~BzðxÞ ¼ ~Bz þ ~Dxð ~BzÞðx� xjÞ þ ~Dyð ~BzÞðy � ykÞ þ DzðbzÞðz� zmÞ; ð27Þ

and remarks made above on different behaviors of staggered ðby ; bzÞ and cell-centered ð ~By ; ~BzÞ values,

respectively, and on the different smoothness properties depending on the involved coordinates,

apply.

We remark here that this apparent duality in the reconstruction procedure appears to be fully consistent

with the physical duality of the MHD Rankine–Hugoniot relations. In fact, using a local characteristic

decomposition of the ðu;BÞ variables, for a specified direction, say x, only the ðu; ~By ; ~BzÞ variables partic-
ipate to the Riemann wave fan and may contribute, then, to the discontinuous characteristic modes. On the

other hand, the continuous bx variable has no role in the related upwinding procedures.
In upwind schemes, the reconstruction step presented above has relevance not only to recover face

centered values, but also to approximate the BðxÞ field at any point inside a cell, as it is required in schemes

adopting grid refinements (AMR) or multi-grid procedures. In this context, divergence-free interpolants

similar to those derived here, even if based on quite different arguments, have been proposed in [24]. A

related work [25] has presented a detailed analysis to show that, under linear interpolation based on

staggered data, conservative properties and the divergence-free relation can be preserved in cell-subcells

refinement procedures.

To summarize, it follows from this analysis that a numerical divergence-free magnetic field can be
represented in an unambiguous way by using bi staggered values (or equivalently the related numerical

vector potential) as primary data. In this representation, second-order approximated first derivatives are

consistent and non-oscillatory (no cell crossing is needed) and the variable ½r � B�num �
P

i½DiðbiÞ�j;k;m in Eq.

(21) results to be exactly zero inside any point of Cj;k;m. At the same time, the reconstruction procedures at

cell interfaces, where variables are discontinuous, provide definite rules on how to formulate upwind

differentiation.

2.2.1. Reconstruction and central derivatives in non-CT schemes

A CT-based formalism helps also to analyze the reconstruction problem in the SUP framework, where

only cell averaged Bi values are at disposal. By restricting to the Bxðx; �Þ function, a linear interpolant reads

~Bxðx; �Þ ¼ ½Bx�j þ ½CxðBxÞ�jðx� xjÞ þ � � � ; ð28Þ

where CxðBxÞ denotes a (by now unspecified) consistent approximation of the first derivative. For a

piecewise differentiable function, at a point xjþ1=2 this interpolant provides in general two values, as left and

right approximations, like for all other variables. By imposing there the additional continuity condition,

specific to magnetic field components, one has

½Bx�j þ 1
2
hx½CxðBxÞ�j ¼ ½Bx�jþ1 � 1

2
hx½CxðBxÞ�jþ1; ð29Þ

and since Taylor expansion for Cx is not applicable across a discontinuous interface, this assures only an

implicit way to express the numerical derivative in terms of the cell-centered data. This suggests that some

added condition, like the non-oscillatory constraint, should be required even for x-wise interpolations, but
how to recover the divergence-free condition remains here an open question.We are not aware of any SUP-

based scheme where this problem has been properly addressed. It is a common practice, instead, to use for
flux computations the mid-point average
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ð~bxÞjþ1=2;k;m ¼ 1
2
½ðBxÞj;k;m þ ðBxÞjþ1;k;m�; ð30Þ

resulting in a OðhxÞ approximation. In turn, this entails an approximation for the first derivative given by

the central difference

½DðcÞ
x ðBxÞ�j;k;m ¼ 1

2hx
½ðBxÞjþ1;k;m � ðBxÞj�1;k;m�: ð31Þ

However, when the relevant ðxj�1; xjþ1Þ stencil includes a discontinuity, say at xjþ1=2, by using the relation

(29) with Cx ¼ DxðbxÞ we have

½DðcÞ
x ðBxÞ�j;k;m ¼ ½DxðbxÞ�j;k;m þOð1Þ; ð32Þ

the Oð1Þ term resulting from the first derivative jump as estimated in (25). Using the same argument to the

other ðBy ;BzÞ components, a final ½r � B�num ¼ Oð1Þ results. This is well documented in numerical experi-
ence where a central difference is used for discontinuous functions (the Gibbs pathology).

2.2.2. Extension to higher order

The first derivative discontinuity of a divergence-free field has also relevance to extend a CT-based re-

construction to higher orders (rP 3) of spatial accuracy. In Godunov-type schemes, higher order recon-

structions for scalar variables are usually provided by ENO-based interpolants, like Weighted-ENO

(WENO, [26] and references therein) and Convex-ENO (CENO, [27]). For regular grids, these interpolants,

once defined for one-dimensional variables, can be extended to higher dimensions by a tensor-product
representation.

For the magnetic field more elaborate procedures are needed, however, by taking into account that non-

oscillatory derivatives along different directions are non-commutative. A general strategy we propose is to

reconstruct first the vector potential components Ai in the usual way, by taking advantage that these are

scalar variables, and then to define the bi point values using the basic B ¼ r� A relation. However, using

the vector potential alone is not sufficient to guarantee a divergence-free relation. A crucial step to make

this procedure effective is to approximate the r� A derivatives by consistent two-point, fixed-stencil, high

order finite differences.
As an example, in Appendix A we report the third-order implementation of the CENO reconstruction

procedures.
2.3. Upwind step: Roe-type approximate Riemann solvers

Using the grid notation of Section 2.2, the MHD equations (8) and (11) take the form

d

dt
½uðtÞ� þ

X
i

Diðf iÞ ¼ 0 ð33Þ

and

d

dt
½biðtÞ� þ

X
j;k

�i;j;kDjðEkÞ ¼ 0; ð34Þ

the first set being centered at cell nodes and the second at cell interfaces. The overall system has now to be
evaluated using some approximate Riemann solver, the same for all flux functions and for all Cartesian

components, at a time. Here we make reference to Roe-type schemes, allowing a full resolution of the

characteristic MHDmodes, whereas the so-called central and central-upwind schemes, which avoid spectral

decomposition, will be briefly treated in Section 3.2.
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Let us then first specialize to the 1-D flux differentiation along the x coordinate and denote with

Fx ¼ ½F s
x �

T
, for s ¼ 1; 2; . . . ; 7, the array of all flux components, defined at the x ¼ xjþ1=2 point for generic

ðy; zÞ coordinates of the Sx ¼ Sþ
x face. These components are F ðlÞ

x ¼ f ðlÞ
x , for l ¼ 1; 2; . . . ; 5, whereas the

components entering the induction equation are F ð6Þ
x ¼ �Ez and F ð7Þ

x ¼ Ey . Correspondingly, we denote

with wx ¼ ½q; qi; e;By ;Bz�T the array of variables which need reconstruction as point values at the Sx face and
as ½wE

x ðy; zÞ;wW
x ðy; zÞ� (East–West, see Fig. 2) the corresponding left–right states. The magnetic field com-

ponent bxðx; �Þ in the parallel direction i satisfies bEx ¼ bWx by continuity, thus the arguments of flux functions

FxðwÞ have to be specified as ðwa
x ; bxÞ, for a ¼ E;W. For short, we denote as Fa

x ¼ Fxðwa
x ; bxÞ.

Approximated Riemann solvers based on local linearization technique (see e.g. [28,29] for the MHD

case) rely on the Roe matrix Âx, defined as numerical Jacobian by

FW
x � FE

x ¼ Âxð~wÞ � ðwW
x � wE

x Þ � Âx � dxwx; ð35Þ

at any ðy; zÞ point of the indicated Sx cell face. As usual, the Âx matrix is evaluated at an appropriate in-

termediate state ~w ¼ ½~wxðwW
x ;w

E
x Þ; bx�, and is required to be consistent with the Jacobian matrix Jx presented

in Section 1.1. We notice the Âx matrix has rank seven, as in the pure 1-D case where Bx ¼ const: holds. In
fact, in the multidimensional case the continuity condition dxbx ¼ 0 plays a similar role, implying Bx is

locally constant and does not participate to the characteristic wave fan.

To express the local flux variations in Eq. (35) in terms of characteristic modes, let us consider the

spectral decomposition Âx ¼ ½RKR�1�x, where, if ks, s ¼ 1; 2; . . . ; 7, are the Roe matrix real eigenvalues,

K ¼ diagfksg, and columns of the R matrix are the corresponding right eigenvectors. In this representation,

let us then split Âx ¼ ½ Âx�þ þ ½ Âx��, where the first term contains components with ks > 0 and the second

with ks < 0, respectively. In this form, one has also j Âxj ¼ ½ Âx�þ � ½ Âx��, where j Âxj ¼ ½RjKjR�1�x and
jKj ¼ diagfjksjg. By using standard procedures, from the two-point flux function FxðwE

x ;w
W
x ; bxÞ a one-

valued, continuous and monotone flux can be selected as upwind state by

FU
x ¼ FE

x þ ½ Âx�� � dxwx ¼ FW
x � ½ Âx�þ � dxwx; ð36Þ

so that the usual Roe flux formula comes out as

FU
x ðwE

x ;w
W
x ; bxÞ ¼ F�

x �Ux; ð37Þ

where

F�
x ¼ 1

2
ðFW

x þ FE
x Þ; Ux ¼ 1

2
j Âxj � ðwW

x � wE
x Þ; ð38Þ
Fig. 2. The notation used for the reconstructed values inside a cell Cj;k;m (here a cut through the center, normal to the z-direction, is
shown) and the position of upwind fluxes, to be constructed via contributions from neighbouring cells. Fluxes are either defined as two-

state functions located at cell interfaces, ðFU
x Þjþ1=2;k;m and ðFU

y Þj;kþ1=2;m, or as four-state functions located at cell edges, ðEU
z Þjþ1=2;kþ1=2;m.
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the first term expressing the smooth component leading to a centered two-point formula in flux differen-

tiation and the second the Roe-type component coming from the upwind procedure. At a discontinuity

interface, the latter provides numerical dissipation which needs to be consistent with entropy conditions. To
that purpose, for shock solutions where ks ’ 0, a small amount of added dissipation ks ! ks þ gs has to be

introduced as entropy-fix to avoid unphysical behaviors.

With a straightforward extension, for coordinates i ¼ y; z, the Âi Roe matrices and the upwind fluxes

FU
i ðwi; biÞ ¼ F�

i �Ui can likewise be constructed, each function being evaluated at points of the Si proper
orthogonal face.

By taking advantage of the Roe formalism, which is based on independent 1-D Âi matrices, where

characteristic modes are represented locally as planar waves along each direction, it is possible to evaluate,

at a time, numerical fluxes collocated at different points. In fact, in Eq. (33) the final five-component nu-
merical fluxes f i ¼ F

ð1�5Þ
i for i ¼ x; y; z are obtained as an average over the proper face Si. This average

involves only interior face points and then only a characteristic wave fan, the one represented by the Âi

matrix. On the other hand, the remaining F
ð6�7Þ
i flux components appearing in the induction equation (34)

are defined as point values at the intersections of cell faces, where different characteristic wave fans overlap.

These flux components can be likewise evaluated by a linear combination of 1-D upwind fluxes along the

intersecting direction. It is a main feature of the UCT method that this combination follows a proper

upwind selection rule, since a same flux component at the same collocation point results to have two inde-

pendent representations in terms of characteristic wave fans.
As a prototype, we consider the Ez flux, which is defined at the ðxjþ1=2; ykþ1=2; zÞ points where faces Sx and

Sy intersect. Let then denote as wy ¼ ½q; qi; e;Bx;Bz�T the set of variables having a representation in terms of

the Ây matrix eigenmodes and by Fy ¼ FyðwN
y ;w

S
y ; byÞ, the corresponding flux array, where now ðwN

y ;w
S
y Þ

(North–South) denote the left–right states along the y coordinate. At the indicated intersection points,

Ez ¼ �F ð6Þ
x ¼ F ð6Þ

y comes out to be a four-state function Ezðwa;bÞ where a ¼ N; S, b ¼ E;W, since the w

argument contains both wx and wy variables (see again Fig. 2).

The sixth flux component F ð6Þ
x ¼ �Ez, defined in Eq. (37) and specialized at the y ¼ ykþ1=2 point, is

represented by two independent contributions coming from states ðwN;wSÞ:

½F U
x ðwNÞ�ð6Þ ¼ f �N

x � /N
x ; ½F U

x ðwSÞ�ð6Þ ¼ f �S
x � /S

x ; ð39Þ

where f �
x ¼ F �ð6Þ

x and /x ¼ Uð6Þ
x . On the other hand, the F ð6Þ

y ¼ Ez flux function, defined for generic x values,
is represented by two independent contributions for states ðwE;wWÞ at the x ¼ xjþ1=2 point:

½F U
y ðwEÞ�ð6Þ ¼ f �E

y � /E
y ; ½F U

y ðwWÞ�ð6Þ ¼ f �W
y � /W

y ; ð40Þ

where now f �
y ¼ F �

y ð6Þ and /y ¼ Uð6Þ
y . By taking into account that F ð6Þ

y ¼ �F ð6Þ
x at the same ðxjþ1=2; ykþ1=2Þ

point, a one-valued numerical flux function having the continuity and upwind properties along each di-

rection can be then constructed at the linear level by

EU
z ðwÞ ¼ E�

z � /y þ /x; ð41Þ

where

E�
z ¼ 1

4
½ENE

z þ ESE
z þ ENW

z þ ESW
z �; /y ¼ 1

2
ð/E

y þ /W
y Þ; /x ¼ 1

2
ð/N

x þ /S
x Þ; ð42Þ

and Ea;b
z ¼ Ezðwa;bÞ, with a ¼ N; S, b ¼ E;W. The continuity property of this relation implies, in particular,

that for any possible orientation, namely along a cell face diagonal or along a cell face side, the corre-
sponding one-dimensional planar mode is taken into account in proper way, to within Oðjdxwxjjdywy jÞ, by
the upwind combination above. The Ez flux, given in Eq. (41) for generic z coordinate of the ðSx; SyÞ
common side, is finally evaluated by line averaging as ðEzÞjþ1=2;kþ1=2;m numerical flux. In a similar way, the
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other x and y components can then be constructed by a proper combination of upwind fluxes along the

corresponding orthogonal coordinates and line averaging along the parallel coordinate.

This completes the presentation of the UCT formalism. For later reference, we quote here the flux
formulas given above, specialized to a first-order approximation, which constitutes the building block of

any Godunov-type scheme, needed for higher order extensions. A piecewise constant reconstruction for wx

variables at the x ¼ xjþ1=2 point, needed in Eq. (37), gives wE
x ¼ ðwxÞj, wW

x ¼ ðwxÞjþ1, at any ðy; zÞ point. Face
averaging reduces to the one-point evaluation Fxðwx; bxÞ ¼ Fxðwx; bxÞ and the first-order numerical flux in

Eq. (37), for the five-component f flux array, reads then (over-bars are henceforth omitted for brevity):

ðfUx Þjþ1=2;k;m ¼ ðf�xÞjþ1=2;k;m � ðUxÞð1�5Þ
jþ1=2;k;m; ð43Þ

where, at the indicated ðyk; zmÞ points,

ðf�xÞjþ1=2 ¼ 1
2
½fxððwxÞjþ1; ðbxÞjþ1=2Þ þ fxððwxÞj; ðbxÞjþ1=2Þ� ð44Þ

and

½Ux�jþ1=2 ¼ 1
2
jAxð~wjþ1=2Þj � ½ðwxÞjþ1 � ðwxÞj�; ð45Þ

and so forth for other directions. To the same first-order approximation, the Ez flux in Eq. (41) can be
calculated at ðxjþ1=2; ykþ1=2; zmÞ edge points (the zm centering will be assumed implicitly in the following). By

specializing the Ez ¼ f �
y ¼ �f �

x ¼ �ðvxBy � vyBxÞ argument variables, the smooth term results as:

ðE�
z Þjþ1=2;kþ1=2 ¼ �1

2
½ðv̂xbyÞjþ1 þ ðv̂xbyÞj�kþ1=2 þ 1

2
½ðv̂ybxÞkþ1 þ ðv̂ybxÞk�jþ1=2; ð46Þ

where ðv̂xÞl;kþ1=2 ¼ 1
2
½ðvxÞk þ ðvxÞkþ1�l, for l ¼ j; jþ 1, and ðv̂yÞjþ1=2;l ¼ 1

2
½ðvyÞj þ ðvxÞjþ1�l, for l ¼ k; k þ 1. It is

worth noticing that in Eq. (46), the E�
z term contains the ðbx; byÞ staggered components and the resulting

four-states combination at the ðxjþ1=2; ykþ1=2Þ point cannot be reduced simply to an interpolation or aver-

aging form based on the four cell-centered values of the argument. On the other hand, in the dissipative

Roe-type fluxes, centering at y ¼ ykþ1=2 of the /x term comes out as a two-point average in the orthogonal
coordinate and correspondingly for the /y term, so that

ð/xÞjþ1=2;kþ1=2 ¼ 1
2
½ð/xÞk þ ð/xÞkþ1�jþ1=2; ð/yÞjþ1=2;kþ1=2 ¼ 1

2
½ð/yÞj þ ð/yÞjþ1�kþ1=2: ð47Þ

On the computational side, this form is also economical and of easy implementation, since the four

contributes there involved can be derived from the Ux and Uy fluxes already worked out for the fluid

variables.

2.4. On the problem of numerical monopoles

We consider now some main differences of the present approach with other schemes, by focusing on the

problem of numerical monopoles. These unwanted effects may arise when the
P

i Diðf iÞ term for momentum

equations in Eq. (33) fails to recover the proper ½J� B�num Lorentz force in the original non-conservative

form, or, equivalently, when the orthogonality condition (6) is not satisfied with sufficiently high accuracy.

This problem has been analyzed in details by [30], in a general discretization setting and with no

particular reference to specific upwind differentiations. Here we follow some of his arguments and

notations to show the behavior of various classes of MHD schemes in comparison with our UCT
method. We specialize to second-order flux differentiation, as it is implemented in most of the schemes

in the literature.

By restricting for sake of simplicity to a two-dimensional configuration, the Maxwell stresses Ti;j,
i; j ¼ x; y; entering the momentum flux components are given by
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Tx;x ¼ �Ty;y ¼ 1
2
ðB2

y � B2
xÞ; Tx;y ¼ Ty;x ¼ �BxBy ; ð48Þ

evaluated at the proper interface points, that is ðxj�1=2; ykÞ for Tx;x and Ty;x, ðxj; yk�1=2Þ for Ty;y and Tx;y . We

notice that these terms refer specifically to the f �
i smooth part of the relevant flux components, since Roe-

matrix contributions give only a diffusive term of the Lorentz force. For flux differences related to the qx
momentum, one has then the algebraic relations

DxðTx;xÞ ¼ lxðByÞDxðByÞ � lxðBxÞDxðBxÞ; DyðTy;xÞ ¼ �lyðByÞDyðBxÞ � lyðBxÞDyðByÞ; ð49Þ

all being centered on a ðxj; ykÞ point, where Dx and Dy are the usual divided differences of Eq. (17), and where
for components a ¼ Bx;By we define the averages lxðaÞ ¼ ðajþ1=2;k þ aj�1=2;kÞ=2 and lyðaÞ ¼ ðaj;kþ1=2 þ
aj;k�1=2Þ=2. These two-point averaging on the cell center give lxðaÞ ¼ aj;k þOðh2xÞ and lyðaÞ ¼ aj;k þOðh2yÞ,
for second-order numerical fluxes. By summing the two differences defined above, one has (let h ¼ hx ¼ hy)

DxðTx;xÞ þ DyðTy;xÞ ¼ �Bx½DxðBxÞ þ DyðByÞ� þ By ½DxðByÞ � DyðBxÞ� þOðh2Þ; ð50Þ

where the second term on the right-hand side provides the numerical approximation of the x component of
the Lorentz force. By considering then the correspondent qy momentum flux, the approximation to the

orthogonality condition finally becomes:

½B � ðr � TÞ�num ¼ �ðB2
x þ B2

yÞ½r � B�num þOðh2Þ; ð51Þ

which is satisfied to within the truncation error if the numerical divergence-free relation holds (at least) to

the same accuracy order. For smooth flows this is clearly true in any discretization of first derivatives. But

when discontinuities are present, this term can be even of Oð1Þ size.
In particular:

• In schemes where ðBxÞjþ1=2;k and ðByÞj;kþ1=2 are reconstructed as two-point average of the corresponding

cell-centered data, as discussed in Section 2.2.1, the resulting ½r � B�num in Eq. (51) is expressed by the

central differences DðcÞ
x ðBiÞ, giving contributions of Oðh2Þ size in smooth regions and of Oð1Þ size near

discontinuous interfaces.

In Powell�s eight-wave scheme, the source terms introduced in the momentum equation given by

Bð½r � B�numÞ yield a subtraction of these monopoles, which is another way to express the Lorentz force

in its non-conservative form.

In projection schemes, a ½r � B�num ¼ 0 condition, yet based on cell centered data, is enforced at each

time step as an added constraint, so that monopoles, which arise when flux derivatives are computed, are

prevented to grow in time.

In previous CT-based schemes (e.g. [8–10]), where staggered variables are actually at disposal, only
cell-centered averaged data ~Bi, derived as in Eq. (23), are then employed in flux computations. In that

case the resulting ½r � B�num term in Eq. (51) is still expressed via derivatives based on central differencing

as in Eq. (31), and numerical monopoles are now produced. These can be evaluated now exactly by

noticing that

DðcÞ
x ð ~BxÞ ¼ DxðbxÞ þ h2xRx; Rx ¼

1

4h3x
D3

xbx ð52Þ

and by similar expressions for the other ðBy ;BzÞ components. In this relation the residual h2xRx is Oð1Þ at
points where the bx first derivative is discontinuous, as can be seen from Eq. (25). The final estimate gives

½r � B�num ¼
P

i h
2
i Ri ¼ Oð1Þ since the residuals Ri, i ¼ x; y; z, being related to the transverse jumps, do

not cancel out, in general.
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• The class of UCT schemes proposed here prevents the onset of monopoles, since bi staggered data

enter directly in the corresponding f �
i flux components, and ½r � b�num ¼

P
i½DiðbiÞ� ¼ 0 results in

Eq. (51).

We finally notice that, in order to avoid numerical monopoles, flux derivatives have to be computed
at the same time-stepping level, since time-splitting techniques prevent exact cancellation of ½r � B�num
terms.
3. Examples of application of the UCT method

In the present section, the numerical strategies outlined in Section 2 will be applied to a couple of existing

Godunov-type schemes, originally designed for fluid dynamics. We have chosen two completely different
schemes, a classical Roe-type scheme based on field-by-field limiting along characteristics, and a simple

central-type scheme adopting a two-speed upwind flux with component-wise limiting in the reconstruction

algorithms. Both schemes are proposed here in the semi-discrete form, appropriate for our UCT method,

and then integrated using TVD Runge–Kutta time discretizations of the appropriate order [21].

3.1. Roe-type: the positive scheme

We present here the MHD implementation of a second order flux-limited scheme proposed by Liu and
Lax [14,15]. This approach allows for an easy formulation for multidimensional hyperbolic systems and can

then represent a well-behaved alternative to standard TVD-based schemes (see [23]). Moreover, these

authors have introduced a new positivity principle, which is more appropriate for multidimensional sys-

tems, to which TVD do not apply. This stability principle relies, in particular, on the symmetrizable form of

the system under investigation and is then well suited also for MHD equations.

Flux-limited schemes are constructed as a proper combination of an accurate second-order smooth

numerical flux, for example the centered approximation F� ¼ ðFj þ Fjþ1Þ=2 or a Lax–Wendroff term, and

a first-order diffusive flux of the form Fdiss ¼ F� �Uð1Þ, in a way that when the flow is smooth FU ¼ F� and
when discontinuities are present FU ¼ Fdiss. In a symbolic way, this combination can be expressed as

FU ¼ F� � ðI � LÞUð1Þ, where L is a diagonal operator whose entries are flux limiter functions /sðhsÞ
acting, in general, on characteristic modes and assuring /sðhsÞ ¼ 1 for smooth modes and /sðhsÞ ¼ 0

otherwise.

In particular, in this positive scheme by Liu and Lax, two first-order dissipative schemes are combined

with different flux limiters: a first (least dissipative) flux of Roe-type and a second (more dissipative) flux of

LLF-type, the latter acting also as entropy-fix for the former. In the MHD implementation, the Roe

matrices Âið~wÞ are constructed in the space of primitive variables, with a simple two-point average to define
the state ~w and with the eigenvector formulation given in [31] to remove degeneracies.

The resulting formula, for each Cartesian flux component, reads then:

FU
jþ1=2 ¼ 1

2
½FðwjÞ þ Fðwjþ1Þ� � 1

2
R½cROEjKjðI � LÞ þ cLLFaðI �MÞ�R�1ðwjþ1 � wjÞ; ð53Þ

where the two coefficients combining the two dissipative terms are chosen such as cROE þ cLLF ¼ 1, M is a

diagonal term made up of smooth minmod-type limiters that satisfy 06/sðhsÞ6 1, 06/sðhsÞ=hs 6 1, L is a

diagonal term whose sharper limiters satisfy 06/sðhsÞ6 2, 06/sðhsÞ=hs 6 2, for a resulting maximum CFL
number of 0:5 (for more technical aspects, the reader is referred to the cited works).

In our experience, when applied to the MHD system by following the UCT strategies described in

Section 2, this scheme results to be a robust and accurate flux-limited scheme, with almost no extra

computational effort, if compared to standard multidimensional TVD schemes.



P. Londrillo, L. Del Zanna / Journal of Computational Physics 195 (2004) 17–48 33
3.2. Central-type schemes

In the fluid-dynamics community, schemes adopting simple one or two-speed numerical fluxes with
component-wise reconstruction (no characteristic decomposition is thus required), are often referred to as

central or central-upwind schemes, since it has been proved these approximate Riemann solvers come out in

Roe-type schemes by some form of central averaging over the Riemann characteristic wave fan (see [32,33]

for the latest developments). For most applications, even in shock dominated flows, these schemes give yet

satisfactory results and are surely more economical than Roe-type schemes, even when third or higher order

reconstruction is applied.

In the present paper, two UCT implementations of central-upwind schemes based on the Harten–Lax–

Van Leer (HLL) [34] two-speed flux and component-wise reconstruction are considered:
1. the simplest second-order HLL-UCT implementation is performed by reconstructing all (potentially dis-

continuous) variables by a monotonized centered (MC) Van Leer [22] limiter. Flux upwinding is then

achieved by a HLL flux formula, as presented below for the MHD system. Time integration is finally

given by the second-order Runge–Kutta scheme. This second-order central-type scheme will be here re-

ferred to as MC-HLL-UCT;

2. A third-order central scheme, based on the local Lax–Friedrichs (LLF) flux and Liu and Osher Convex-

ENO (CENO) scheme [27], has been already presented and tested in our first paper LD. The choice of

CENO has been favored by the following interesting features: first, the high order reconstruction algo-
rithm is able to reduce itself to minmod-type limiters (MM or MC) at discontinuities, thus strongly re-

ducing spurious oscillations typical of component-wise reconstruction via ENO interpolants; then, a

formulation based on point values, rather than cell averages, allows the use of purely one-dimensional

reconstruction routines. The same algorithms are used here in a central-upwind scheme now equipped

with an HLL flux formula, and this new third-order central-type scheme will be named CENO-HLL-

UCT. For the interested reader, we report in Appendix A the main computational steps used.

In the following, we define the HLL two-speed formulas appropriate for MHD. The HLL upwind flux

for the fluid components, say fx at ðxjþ1=2; yk; zmÞ, may be written as

fUx ¼ aþx f
E
x þ a�x f

W
x � aþx a

�
x ðuW � uEÞ

aþx þ a�x
; ð54Þ

where as usual fax ¼ fxðwa
x ; bxÞ, a ¼ E;W, and

a�x ¼ maxf0;�k�x ðwW
x ; bxÞ;�k�x ðwE

x ; bxÞg; ð55Þ

and similarly for the other y and z components. Here, to avoid the definition of an intermediate Roe-type

state, we have chosen to calculate the dissipative a�x terms by taking the maximum eigenvalues (in MHD

systems related to the fast magneto-sonic speeds: k�x ¼ vx � cfx) between left and right states.

Notice that, by rearranging the terms, it is still possible to rewrite Eq. (54) in the form of Section 2.3

f� �U, so that the discussion on ½r � B�num of Section 2.4 applies unchanged. On the other hand, we can not

use the same composition rules outlined in Section 2.3 to derive Roe-type magnetic fluxes. The correct form
of the EU

z upwind flux comes out now by averaging over the two overlapping x and y Riemann wave fans at

the ðxjþ1=2; ykþ1=2Þ edge, thus

EU
z ¼

aþx a
þ
y E

NE
z þ aþx a

�
y E

SE
z þ a�x a

þ
y E

NW
z þ a�x a

�
y E

SW
z

ðaþx þ a�x Þðaþy þ a�y Þ
�

aþy a
�
y

aþy þ a�y
ðbSx � bNx Þ þ

aþx a
�
x

aþx þ a�x
ðbWy � bEy Þ; ð56Þ

where the a�x and a�y at edge center points should be calculated by taking the maximum characteristic speeds

(in absolute value) among the four reconstructed states, whereas for sake of efficiency we actually consider
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the maximum over the two neighboring inter-cell points, where these speeds are already at disposal from

fluid fluxes computation.

In spite of a different form, Eq. (56) share with Eq. (41) all the required upwind properties, that is to be a
four-state formula and to reduce to the correct 1-D flux for shocks aligned with x, y, or x� y diagonals. The
usual settings are instead recovered for LLF fluxes, which are the particular cases of the corresponding

HLL ones for aþx ¼ a�x ¼ ax and aþy ¼ a�y ¼ ay , where now each single ai ¼ maxfaþi ; a�i g speed defines a

symmetrical (central) averaged Riemann fan.

It is interesting to notice that the upwind fluxes of Eq. (54) generalize to MHD the formulas of the [33]

central scheme for the Euler system. Moreover, Eq. (56) coincides with that defined in the same paper for

Hamilton–Jacobi scalar equations, which is to be expected since each component of the induction equation,

for a given velocity field and expressed in terms of the magnetic potential, has exactly the form of such
equations.
4. Numerical results on test problems

We present now a standard set of numerical examples to assess accuracy, stability and effective diver-

gence-free properties of our UCT schemes presented above. In the following tables and plots we shall refer to

these three schemes as POSITIVE-UCT (the flux-limited Roe-type scheme of Section 3.1), MC-HLL-UCT,
and CENO-HLL-UCT (respectively, the second and third-order central-upwind schemes described in

Section 3.2). Most of the choices in the following tests have been inspired by those in [1], although a direct

comparison of UCT with the other methods for MHD proposed or reported is difficult to achieve, due to the

use of different underlying schemes, and it will be not our main concern here. Comparisons will be made

instead among our three UCT schemes, and also with respect to their corresponding non-UCT counterparts,

i.e., when magnetic field components are discretized and evolved exactly as the other fluid variables (the SUP

framework), with the same underlying scheme. We shall refer to these Euler-like versions as base schemes

(BS). This will enable us to appreciate the effective improvements introduced by the use of our UCTmethod.
In the following sub-sections we shall provide quantitative measures of the divergence-free properties in

our schemes. To distinguish between the two types of numerical representations discussed in Sections 2.2.1

and 2.4, here we shall define, for each cell Cj;k;m, the two quantities

½r � B�num ¼
X
i

DðcÞ
i ð ~BiÞ; ½r � b�num ¼

X
i

DiðbiÞ; ð57Þ

whereDðcÞ
i are the central derivatives defined in Eq. (31), applied to the cell-centered derived data ~Bi, andDi are

the usual two-point divided differences defined in Eq. (17). As already discussed, while ½r � b�num will be zero to

within machine accuracy for second-order UCT schemes, and arbitrarily small (see Appendix A) for CENO-
HLL-UCT (it is simply not defined for the BS counterparts), the ½r � B�num variable may have Oð1Þ jumps at

discontinuities. Recall that in UCT schemes the onset of monopoles is actually measured by the ½r � b�num
variable, rather than by ½r � B�num like in other CT and non-CT methods for MHD where cell-centered fields

are employed in fluxes. Notice that, in spite of the use of the staggered magnetic field b in the initial conditions

and in the computations, the output data will be referred to the cell-centered interpolated field B.

To obtain more accurate results in the various test problems, schemes may be tuned by choosing each

time the most appropriate slope limiter in the reconstruction routine. In all simulations, a CFL number of

0:5 and an adiabatic coefficient of c ¼ 5=3 are used, unless differently specified.

4.1. A convergence test: the oblique CP Alfv�en wave

A propagating circularly polarized (CP) Alfv�en wave is a well-known exact non-linear solution of the

multidimensional MHD system, and therefore it is often used to measure accuracy of a numerical
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approximation. We notice that this test involves only smooth solutions, thus problems related to the di-

vergence-free condition are not expected to arise here. Following [1], we consider a CP wave propagating on

the ðx; yÞ Cartesian plane at an angle a ¼ 30� relative of the x-axis. Periodic boundary conditions can be
applied if the computational box is defined by 0 < x < 1= cos a; and 0 < y < 1= sin a. Let the coordinate

along the propagation direction be n ¼ x cos aþ y cos a and g ¼ y cos a� x sin a be the coordinate along the

transverse direction, then the initial values of wave variables may be given as vg ¼ Bg ¼ A sinð2pnÞ and

vz ¼ Bz ¼ A cosð2pnÞ, where A measures the wave amplitude. The constant parallel components are defined

as vn ¼ 0 and Bn ¼ 1, along with a uniform density q ¼ 1 and pressure p ¼ 0:1. The chosen values corre-

spond to a wave period T ¼ 1, to a propagation Alfv�enic speed vA ¼ 1, and to a sound speed

cs ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
’ 0:4.

To check numerical accuracy, the evolved solution wðx; y; tÞ at a time tmax ¼ nT , for a given number n of
periods, is usually compared to the initial condition wðx; y; 0Þ and the difference dw evaluated in some norm

is then tabulated at different grid resolutions. To compare with the Toth results, we also adopt the L1 norm

to evaluate the relative errors and the averaged �d values are measured only by taking into account the

transverse vector components vg, vz, Bg, and Bz. However, since we have noticed that convergence was not

precisely achieved with the values A ¼ 0:1 and n ¼ 5 suggested by Toth, especially for our most accurate

third-order central scheme, we have decided to use here the safer values A ¼ 0:01 and n ¼ 1. We think that

the reason is due to compressible effects: in spite of the fact that a CP Alfv�en wave is an exact solution,

regardless of its amplitude A, this kind of wave is known to be subject to the so called parametric decay

instability (see [35] and references therein). This is due to non-linear wave–wave interactions that, via

coupling to compressive modes, lead to wave distortion and decay, so that when this happens we are no

longer comparing with the true solution.

The results are reported in Table 1 for all our three UCT schemes, with resolutions ranging from 82 to

1282. In our highest accurate scheme CENO-HLL we use the smoother MM limiter, while for the second-

order schemes the sharper MC limiter is employed, otherwise results at low resolution are not quite sat-

isfactory, and a small value of cLLF ¼ 0:01 is used in POSITIVE. In cases where only smooth fields are

involved, UCT schemes may perform worst than their BS counterparts, due to the additional interpolations
needed to recover the cell-centered magnetic fields (e.g., in output files). We have verified that in this

particular test problem the error for the BS versions (not reported here) are approximately 10% less than

for their UCT counterparts.

The results for all UCT schemes are also plotted in Fig. 3, where the convergence rates are apparent.

Note that in this kind of problems CENO-HLL is obviously by far the most performing code: the accuracy

reached with a resolution of 322 is comparable to that obtained by the second-order methods with 1282.

Concerning divergence-free properties, the particular settings of the problems are such that both

½r � B�num ¼ 0 and ½r � b�num ¼ 0 to within machine accuracy for the second-order UCT schemes, because
the invariance direction g is made to coincide with the cell diagonal, a condition required by the double

periodicity (independently on the value of the angle a). For CENO-HLL-UCT, typical values for the

maximum values of ½r � B�num and ½r � b�num are 10�8 and 10�12, respectively.
Table 1

Averaged errors on the transverse velocity and magnetic field components for the oblique 2-D CP Alfv�en wave problem

d8 d16 d32 d64 d128

POSITIVE-UCT 0.53097 0.12792 0.04273 0.01254 0.00322

MC-HLL-UCT 0.60488 0.13133 0.04507 0.01392 0.00393

CENO-HLL-UCT 0.31342 0.03759 0.00461 0.00056 0.00012

The errors are measured from the numerical solution at time t ¼ 1 (one wave period), compared with the corresponding initial

setting, for increasing resolutions and for the various UCT schemes.



Fig. 3. Convergence test for the oblique 2-D CP Alfv�en wave problem. Average L1 errors on transverse g and z wave components are

shown in logarithmic scale for our three UCT schemes. Precise second-order accuracy is achieved only asymptotically for POSITIVE-

UCT and MC-HLL-UCT, due to the use of the MC limiter which tends to somehow sharpen wave profiles, while third-order con-

vergence is clearly reached by CENO-HLL-UCT, here employing MM in the reconstruction algorithm, already at very low resolutions.
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4.2. Rotated shock-tube problems

These test problems involve the propagation of discontinuities defined by usual 1-D shock-tubes on a 2-

D computational plane, and are relevant to some main aspect considered here on the divergence-free

condition. However, specific divergence-free properties may be hidden if one (or both) of the following

special conditions hold:
1. the initial magnetic field is uniform;

2. the propagation direction lies along cell sides or diagonals.

In the first case, it is clear that any representation of ½r � B�num will be exactly zero for initial fields. Then

its subsequent time evolution will only give a measure of the ability of a numerical scheme to preserve the

initial ½r � B�num, even if it is non-vanishing, while a characterizing aspect of any CT-based scheme is

precisely the possibility to deal with discontinuous divergence-free fields.

Concerning the second case, the problem is the same as in the previous test, though here involves dis-

continuities and will be described in details. For initial symmetric conditions where all variables are defined
as wðx; yÞ ¼ wðnÞ, where n is a coordinate making an angle a with respect to the x-axis, and they do not

depend on the transverse g coordinate, it is important to check at later times not only the evolution

properties along the n coordinate but also the conservation of the transverse invariance. In particular, the

r � B ¼ 0 condition expressed in the rotated coordinates is given by

r � B ¼ onBn þ ogBg ¼ 0; ð58Þ

and the equivalent condition Bnðx; yÞ ¼ const: can be recovered only if Bg (and all other variables, of course)

are g independent. However, in numerical applications based on standard Cartesian grids this condition

may be achieved only if the n and g directions are aligned with the cell diagonals (or the cell sides). In fact,

any discontinuity front making a different angle will be discretized with unequal jumps along x and y. Thus,
even when the ½r � b�num ¼ 0 condition holds, the Bn ¼ const: relation does so only in approximate sense,

with Oð1Þ jumps where discontinuities occur. More strictly related to the errors in the Bn variable, which has

to be necessarily calculated from the interpolated ~Bi cell-centered fields, is the ½r � B�num variable, which in

fact shows the highest jumps precisely at discontinuities. We have verified that, when the angle a ¼ 45� is
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chosen, both the conditions Bn ¼ const: and ½r � B�num ¼ 0 hold within machine accuracy, as in the previous

test.

The numerical domain for the oblique shock tube tests may be reduced, as cleverly suggested by Toth, to
just a narrow strip ½0; 1� � ½0; 2=N �, discretized with a N � 2 grid (so that dx ¼ dy). Shifted boundary

conditions in the g direction are applied and a ¼ tan�1 2 � 63:4�. Each 2-D run, performed with N ¼ 256, is

compared with the corresponding 1-D test on a 1024 grid, by using the data along the x-axis (the first row)
at a final time tmax cos a (where tmax refers to the 1-D test).

The initial left (L) and right (R) states of the three shock tube problems considered here are reported in

Table 2, and the final times are tmax ¼ 0:08 for ST-1, tmax ¼ 0:2 for ST-2, and tmax ¼ 0:1 for ST-3. ST-1 is a

coplanar 2-D problem of converging shocks in an initially uniform magnetized background, ST-2 is a non-

coplanar case involving Alfv�enic discontinuities, and ST-3 is the famous (coplanar) Riemann problem
involving the so-called compound (or intermediate) shock. Note that in ST-2 and ST-3 the magnetic field

has jumps in the initial data and a 6¼ 45�, so none of the special cases indicated above apply. Other Rie-

mann problems have been checked and the UCT schemes appear to behave well in all cases, including for

example non-coplanar tests with compound shocks. The same three problems have been tested in LD for

the CENO-LLF-UCT code on a symmetric N � N grid with a ¼ 45�, while Toth shows just the first two

tests: ST-1 with precisely the same settings and ST-2, the non-coplanar 2.5-D problem, with a ¼ 45�.
Here the most steepening slope limiters and a minimum amount of viscosity are used in our schemes:

thus POSITIVE uses the Superbee (SB) limiter for all entries of L, cLLF ¼ 0:01, and the limiter in CENO-
HLL is MC. In Table 3 we report, for all tests and numerical schemes, the d average L1 norm over the

variables involved in each test, the L1 norm of the errors in Bn, the L1 norms of variables ½r � B�num and

½r � b�num (respectively, ½r � B�avr and ½r � b�avr), and their maximum absolute value over the computational

domain (respectively, ½r � B�max and ½r � b�max). The comparison between the x projection of the evolved

quantities and the reference 1-D runs for our three UCT schemes are plotted in Figs. 4, 5, and 6, for the ST-

1, ST-2, and ST-3 tests, respectively.

For problems involving sharp discontinuities, like shock tubes, schemes based on characteristics are

clearly preferable since sharp limiters, which lead to more accurate results, may be often used there without
producing spurious oscillations. This can be appreciated from the plots and may be measured more

quantitatively from the reported errors in Table 3, which are the lowest for our POSITIVE scheme. If

limiters less sharp than SB are used in POSITIVE-UCT the errors obviously increase: with MC we find

d ¼ 0:0146 for ST-1, d ¼ 0:0153 for ST-2, and d ¼ 0:0203 for ST-3; with the smoothest MM we find

d ¼ 0:0201 for ST-1, d ¼ 0:0225 for ST-2, and d ¼ 0:0298 for ST-3. Concerning the central schemes, the use

of the MC limiter in the reconstruction step allows to produce accurate results with a rather low level of

oscillations even in the absence of characteristics decomposition. These schemes are just less accurate at

contact and Alfv�enic discontinuities, since the related characteristic waves do not enter the HLL flux
definition.
Table 2

Constant left (L) and right (R) states for the three oblique shock tube problems

q vn vg vz p Bn Bg Bz

Test ST-1: L 1 10 0 0 20 5=
ffiffiffiffiffiffi
4p

p
5=

ffiffiffiffiffiffi
4p

p
0

Test ST-1: R 1 )10 0 0 1 5=
ffiffiffiffiffiffi
4p

p
5=

ffiffiffiffiffiffi
4p

p
0

Test ST-2: L 1.08 1.2 0.01 0.5 0.95 2=
ffiffiffiffiffiffi
4p

p
3:6=

ffiffiffiffiffiffi
4p

p
2=

ffiffiffiffiffiffi
4p

p

Test ST-2: R 1 0 0 0 1 2=
ffiffiffiffiffiffi
4p

p
4=

ffiffiffiffiffiffi
4p

p
2=

ffiffiffiffiffiffi
4p

p

Test ST-3: L 1 0 0 0 1 0.75 1 0

Test ST-3: R 0.125 0 0 0 0.1 0.75 )1 0



Table 3

Numerical errors for the three oblique shock tube problems

d dBn ½r � B�max ½r � B�avr ½r � b�max ½r � b�avr
Test ST-1

POSITIVE-BS 0.0225 0.0051 0:11� 103 0:30� 101 – –

POSITIVE-UCT 0.0126 0.0019 0:94� 102 0:26� 101 0:11� 10�12 0:67� 10�15

MC-HLL-BS 0.0304 0.0090 0:12� 103 0:32� 101 – –

MC-HLL-UCT 0.0227 0.0021 0:10� 103 0:25� 101 0:11� 10�12 0:44� 10�15

CENO-HLL-BS 0.0320 0.0092 0:12� 103 0:33� 101 – –

CENO-HLL-UCT 0.0227 0.0021 0:11� 103 0:27� 101 0:22� 10�6 0:57� 10�8

Test ST-2

POSITIVE-BS 0.0155 0.0016 0:65� 101 0:34� 100 – –

POSITIVE-UCT 0.0119 0.0006 0:70� 101 0:29� 100 0:57� 10�13 0:33� 10�15

MC-HLL-BS 0.0237 0.0025 0:61� 101 0:35� 100 – –

MC-HLL-UCT 0.0200 0.0005 0:66� 101 0:21� 100 0:57� 10�13 0:22� 10�15

CENO-HLL-BS 0.0201 0.0025 0:71� 101 0:41� 100 – –

CENO-HLL-UCT 0.0154 0.0006 0:63� 101 0:25� 100 0:35� 10�7 0:14� 10�8

Test ST-3

POSITIVE-BS 0.0365 0.0043 0:16� 102 0:66� 100 – –

POSITIVE-UCT 0.0165 0.0005 0:86� 101 0:30� 100 0:14� 10�13 0:17� 10�15

MC-HLL-BS 0.0586 0.0064 0:22� 102 0:13� 101 – –

MC-HLL-UCT 0.0295 0.0003 0:46� 101 0:19� 100 0:28� 10�13 0:22� 10�15

CENO-HLL-BS 0.0612 0.0079 0:25� 102 0:17� 101 – –

CENO-HLL-UCT 0.0257 0.0004 0:65� 101 0:23� 100 0:13� 10�6 0:18� 10�8

For the various schemes, the errors are calculated from the 2-D 256� 2 run with respect to the corresponding 1-D high resolution

run with 1024 grid points. The displayed errors are the average d L1 norm of all the involved variables, the error on the parallel field

component Bn (that supposed to remain constant), the maximum and averaged values of ½r � B�num, and the maximum and averaged

values of ½r � b�num, which is not defined, of course, for non-CT schemes.
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Finally, to appreciate the level of damage that monopoles can produce, we plot in Fig. 7 the results of
POSITIVE-BS for ST-3, where monopoles are free to arise (even in initial data since here none of the two

special conditions apply) and grow. By also looking at the tabulated errors, it is clear that BS results are

systematically worst with respect to the correspondent UCT versions (see in particular the errors on Bn).

4.3. The Orszag–Tang vortex problem

A well-known model problem to study the transition to MHD turbulence is provided by the so-called

Orszag–Tang vortex, which has been later adopted as a standard 2-D test for MHD shock-capturing codes.
The initial conditions are here vx ¼ � sin y, vy ¼ sin x, Bx ¼ � sin y, By ¼ sin 2x, q ¼ c2, p ¼ c (so the sound

speed and the initial Mach number are both 1), vz ¼ Bz ¼ 0. The computational domain is a square

0 < x; y < 2p, N � N box with periodic boundary conditions along both directions, while the output time is

tmax ¼ p (note that in LD the magnetic field was normalized against B0 ¼ 1=
ffiffiffiffiffiffi
4p

p
).

All our UCT schemes have been tested with the MC limiter (cLLF ¼ 0:1 in POSITIVE), at the resolutions

of 502, 1002, 2002, and 4002. In Table 4, we report the averaged errors (over the six evolving variables). For

each scheme, errors are measured with respect to a highest accuracy run at 4002, obtained as the average of

the results from the three UCT schemes. More qualitative comparisons can be appreciated in Fig. 8, where
gray-scale images of the temperature for the 2002 runs, for both the BS and UCT versions, are compared to

the respective reference solution (the UCT run with 4002 grid points). Due to the symmetry of the problem,

only the ½0; p� � ½0; 2p� first half of the domain is displayed. The first thing to be noticed is that the BS



Fig. 4. The oblique ST-1 shock tube problem. The numerical results from our three UCT schemes obtained on a 256� 2 grid

(symbols) are compared with the 1-D solution on a 1024 grid (solid line).
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Fig. 5. The oblique ST-2 shock tube problem. The numerical results from our three UCT schemes obtained on a 256� 2 grid

(symbols) are compared with the 1-D solution on a 1024 grid (solid line).
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Fig. 6. The oblique ST-3 shock tube problem. The numerical results from our three UCT schemes obtained on a 256� 2 grid

(symbols) are compared with the 1-D solution on a 1024 grid (solid line).
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Fig. 7. The oblique ST-3 shock tube problem, this time for the base scheme (BS) version of POSITIVE. Note the presence of errors

induced by the numerical monopoles, here free to arise and grow in time.
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versions clearly produce incorrect results: the darkest, rather homogeneous features of the reference so-

lutions appear more structured, with whiter filaments, and sometimes spurious oscillations are visible. By

also reading Table 4, it is then quite apparent that the three schemes behave similarly in this context. Due

to the numerous steepened structures the order of accuracy is close to one in all cases, so that the errors

are very similar. CENO-HLL-UCT is the most performing scheme, giving results almost identical to the

Roe-type POSITIVE-UCT, while MC-HLL-UCT is of course more dissipative, but its results are still

satisfactory.

4.4. The fast rotor problem

In [10], a model problem to study the onset and propagation of strong torsional Alfv�en waves was

presented and analyzed. A disk of radius r ¼ 0:1 made up of dense fluid (q ¼ 10) rotates with high angular
Table 4

Averaged L1 norms on the involved variables for the OT vortex problem at t ¼ p

d50 d100 d200

POSITIVE-UCT 0.1601 0.0780 0.0296

MC-HLL-UCT 0.1898 0.0920 0.0358

CENO-HLL-UCT 0.1477 0.0657 0.0205

Errors are measured against a high resolution (4002) reference run.



Fig. 8. Gray-scale images of the temperature T ¼ p=q distribution in the Orszag–Tang vortex problem. For each scheme, low reso-

lution (2002) results for the BS and UCT versions are compared with the corresponding high resolution (4002) UCT reference run.
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Table 5

Averaged L1 norms on the involved variables for the fast rotor problem at t ¼ 0:15

d50 d100 d200

POSITIVE-UCT 0.1751 0.0888 0.0375

MC-HLL-UCT 0.1770 0.0876 0.0331

CENO-HLL-UCT 0.1525 0.0719 0.0239

Errors are measured against a high resolution (4002) reference run.

Fig. 9. Contours of the magnetic pressure p
m¼ B2= 2 distribution in the fast rotor problem. For each scheme, low resolution (2002)results for the BS and UCT versions are compared with the corresponding high resolution (400 2) UCT reference run.
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velocity (x ¼ 20) in a static, magnetized (Bx ¼ 5=
ffiffiffiffiffiffi
4p

p
) background with uniform density and pressure

(q ¼ p ¼ 1). The adiabatic index is c ¼ 1:4. To conform with [1], the final time is t ¼ 0:15 and the same

initial taper function is used (note that in LD the same problem was solved by the CENO-LLF-UCT code
with t ¼ 0:18 and no tapering).

The numerical settings are identical to those employed in the previous test, and also the errors displayed

in Table 5 are calculated in the same way. In Fig. 9, the magnetic pressure pm ¼ B2=2 is shown as iso-

contours diagrams for all schemes, first the BS and UCT runs at 2002 grid points, compared with the

corresponding UCT reference run at 4002, which is also used to calculate the errors for the lower accuracy

tests. Here the same remarks made above still apply: the accuracy order is low due to discontinuities, the

two second-order schemes behave very similarly (thus MC-HLL-UCT has to be preferred for its efficiency),

while CENO-HLL-UCT gives the sharpest profiles, thus in this kind of model problems the accuracy in the
reconstruction seems to be more important than the accuracy in resolving the Riemann structures. To

conclude, we also notice that the BS schemes appear to behave correctly far from the rotating disk, where

the waves are propagating outwards, while a lot of numerical noise is clearly formed inside the disk, where

the numerical monopoles have time to accumulate, probably in a way similar to the inclined shock tube

problems discussed in Section 4.2.
5. Conclusions

We have presented a method, first outlined in [12], to construct Godunov-type schemes for the

MHD system, named upwind constrained transport (UCT). The main intent of our work is to assure

that specific properties of the magnetic field, related to the basic divergence-free relation, enter as a
built-in properties also in the approximated systems. To that purpose, by taking advantage of the CT

discretization technique, we have presented procedures to define consistent derivative approximations,

reconstruction steps and approximate Riemann solvers all based on the staggered (or face centered)

magnetic field components bi chosen as primary data. A main advantage in this approach is that no

cleaning procedures or ad hoc modifications of the form of the MHD conservative system are

required.

The main steps entering a UCT-based schemes are:

1. reconstruction procedures based on the smoothness properties of the divergence-free B vector field, as
represented in finite volume CT discretization (Section 2.2);

2. the application of standard approximate Riemann solvers for the momentum and energy equations, with

the prescription that only variables not related to the divergence-free condition are reconstructed and

participate to the upwind differentiation. As a benefit, among others, exact cancellation of numerical

monopoles is assured (Sections 2.3 and 2.4);

3. a specific formulation of the approximate Riemann solvers for the induction equation (Section 2.3);

4. a time integration procedure where no time-splitting is adopted.

To demonstrate the validity and flexibility of our UCT method, we have finally applied it to a flux-
limited Roe-type scheme (the positive scheme by Liu and Lax [14]), which proves to be accurate, robust and

well-suited for more demanding applications requiring AMR techniques. This novel scheme has been then

tested numerically on a standard set of model problems and compared to central-type second and third-

order schemes based on the two-speed HLL solver.

We conclude by remarking that our method, defined here for the classical MHD system in regular

structured grids, applies unchanged to the equations of special and general relativistic MHD (see [13]), and

many procedures here presented may have a natural generalization for grid refinements and unstructured

grids.
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Appendix A. Point-value formalism and third-order procedures in the CENO-HLL-UCT scheme

As shown in Section 2.3, to get high rP 3 order schemes in a finite-volume setting, besides a proper r-th
order reconstruction of w variables, a final averaging of the f i flux is needed. In the 3-D case the latter

procedure is not cost-effective and more efficient implementations have been proposed for ENO-type

schemes by Shu and Osher [21]. In this approach, point values u, instead of cell averages u, are advanced in

time and flux values at the interfaces are directly reconstructed at the desired order by using flux point

values f iðuÞ. However, when applied to the MHD system (see [3]), this implementation is not suitable to

take properly into account the divergence-free condition, since the flux reconstruction yet involves the Bi

cell-centered values. Therefore, as in our previous work (LD), we use more appropriate flux reconstruction

techniques. Let then consider the MHD equations, now in the form that comes out by applying the inverse

operation of volume averaging to Eqs. (33) and (34):

d

dt
½uðtÞ� þ

X
i

Diðf̂ iÞ ¼ 0; ðA:1Þ
d

dt
½b̂iðtÞ� þ

X
j;k

�i;j;kDjðÊkÞ ¼ 0: ðA:2Þ

Here u ¼ uj;k;m, now cell-centered point values, constitute the new set of fluid primary data, and corre-

spondingly the conservative flux two-point differences Diðf̂ iÞ are high order approximations of point-value

first derivatives. In the induction equation, on the other hand, b̂i do not coincide with point-value repre-

sentations of the staggered magnetic field components, those named bi which are needed in flux compu-

tations, since their volume averages must now return the surface-averaged bi values. Therefore, b̂i
components are actually defined, now as primary data, in the same way f̂ i fluxes are defined in Eq. (A.1),

thus two-point differences Diðb̂iÞ give high order representations of point-value parallel first derivatives.

Similarly, DjðÊkÞ will be here high order representations of the staggered electric fields first derivatives, and

their volume average must give back line-averaged electric fields.

It is important to notice that if b̂i components are evolved as primary data from Eq. (A.7), the point-

value version of the divergence-free relation (21), which is written as

½r � b�num ¼ Dxðb̂xÞ þ Dyðb̂yÞ þ Dzðb̂zÞ ¼ 0; ðA:3Þ

will be preserved in time (if valid at t ¼ 0) to within machine accuracy, exactly as in the finite-volume

framework of Section 2.1.

Our CENO-HLL-UCT scheme is then based on the following steps:

1. For given wi cell-centered point values we reconstruct the face left–right point values using the appro-

priate CENO algorithm. The upwind fluxes fUi ðwi; biÞ and EU
k ðwÞ are then evaluated by using HLL as

in Section 2.3.

2. For given values of these f i point-value representation of fluxes, the f̂ i data are defined, for i ¼ x; y; z and
at the same points, as

f̂ i ¼ f i � 1
24
~Dð2Þ
i ðf iÞ ðA:4Þ
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where ~Dð2Þ
i is a non-oscillatory approximation of the second derivative in the indicated coordinate. In this

way, the difference Diðf̂ iÞ provides a high order rP 3 accurate approximation of the flux first derivative.

Concerning the magnetic fluxes, given the point values Ek at edge centers, the corresponding Êk data
must be defined as

Êz ¼ Ez � 1
24
½ ~Dð2Þ

x ðEzÞ þ ~Dð2Þ
y ðEzÞ�; ðA:5Þ

and similarly for x and y components.

3. Eqs. (A.1) and (A.2) can now be evolved in time by applying the Runge–Kutta algorithm of the appro-

priate (third) accuracy order.

4. A final computational step is then needed to provide the relation between b̂i primary data and bi stag-
gered point-value fields, those used in flux calculations. One has then to solve the implicit relations

½I � 1
24
~Dð2Þ
i �ðbiÞ ¼ b̂i; ðA:6Þ

for i ¼ x; y; z, typically by means of iterative methods (see LD). As discussed in details in Section 2.4, the

crucial point concerning how to measure magnetic monopoles is that the same algorithm to compute first
derivatives for fluxes should be actually applied to define the bi first derivatives in the ½r � b�num sum of

Eq. (A.3), which is exactly preserved only for b̂i primary data. Thus, when derivatives of ½r � b�num are

calculated starting from bi fields, obtained implicitly from Eq. (A.6), in a similar way as shown in Eq.

(A.4) for fluid fluxes (that is the definition actually relevant for numerical monopoles), the ½r � b�num
variable will not be zero to within machine accuracy (see Section 4), though it can be made arbitrarily

small depending on the precision of the inversion method employed.

In the actual implementation of the code, if one wants to keep track of magnetic field-lines a slightly

different approach, perfectly equivalent to that outlined above, can be followed. The induction Eq. (A.2)
may be substituted by

d

dt
½AkðtÞ� ¼ Ek; ðA:7Þ

where Ak is the point-value representation of the vector potential k component and Ek of the corresponding

electric field component (see the line-averaged counterpart, Eq. (15)). The double non-oscillatory derivation
in Eq. (A.5) must be now applied to, say, Az rather than to Ez:

Âz ¼ Az � 1
24
½ ~Dð2Þ

x ðAzÞ þ ~Dð2Þ
y ðAzÞ�; ðA:8Þ

and the divergence-free staggered b̂i fields are now defined (as in Eq. (14), proper for the finite-volume

framework) as

b̂i ¼
X
j;k

�i;j;kDjð ÂkÞ; ðA:9Þ

to which the above remarks on ½r � b�num apply unchanged.
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